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Machine Learning For ASC

Goal: To find ways to impact ASC 
work in the IC, V&V and PEM. 

In particular in-line ML as opposed 
to post processing.

We have more mature work in the 
CSSE/FOUS area of ASC



Existing work in Machine Learning
● Image and Video based work (Dwave, Neuro, GPU, CPU)

○ Sparse Coding/Compressive Sensing of Radiographic Sequences

○ Predicting Fractures with Sparse Coding
● Infrastructure to run ML kernels on system log data 

Machine Learning on System Logs
○ Developing tool to use temporal characteristics of system logs (including 

telemetry / environmental data)
for anomaly detection

○ Developing tool to predict job outcome based on early warnings from 
system logs

○ Test developed DRAM fault mitigation tool on Trinity supercomputer



New starts for Machine Learning in Mid FY18

● ML for Coarse-Graining and Structure Tagging 
for Fluid Simulations

○ First goal - Predict future state of system by learning exact 
relationship of data at future times from data at previous times using 
data from simulation. Using Burger’s equation.

○ Second goal - Learn approximate relationship of data at future times 
from coarse grained data at previous times using data from 
simulation



A Machine Learning Approach to Coarse-Graining and Structure Tagging for Fluid 
Simulations

Basic Idea: Learn how to integrate a fluid equation from simulation data

Given data Learn dependence

Method for learning dependence: Machine learning - use optimization to find 
parameters of a general non-linear transformation



New starts for Machine Learning in Mid FY18 (cont.)

● ML for Multi-scale Materials
○ On-line or active machine learning using inexpensive coarse-scale 

models combined in a single application code with expensive fine-
scale models to simulate physical phenomena scalablely across 
multiple time and length scales. 

○ PEM/ATDM effort

● Developing ideas in V&V and Data 
reduction/analysis.



Predicting Fractures with Sparse Coding

Goal: Predict unseen frames of a 
fracture propagation simulation by 
leveraging the latent representation 
learned by an unsupervised sparse 
autoencoder

Example frame from fracture 
dataset



Predicting Fractures with Sparse Coding

Process: Train a sparse code on 12 difference frames 
of fracture propagation. Train a deep network to predict 
the full 24 frame sequence, using the sparse code as 
input.

Left: Actual data
Right:Predicted data



Predicting Fractures with Sparse Coding

Deep network weight visualization:



Reconstruct an X-ray image from random pixel sampling

(a) originals (c) reconstructions(b) masked samples

Masks cover 90% of pixels

Z. Wang, O. Iaroshenko, S. Li, T. Liu, N. Parab, W. W. Chen, P. Chu, G. Kenyon, R. Lipton, and K.-X. Sune. Random on-board pixel sampling (ROPS) X-ray camera, 
Journal of Instrumentation (submitted)



Reconstruct intermediate frames (increase frame-rate)

Top row: original frames, bottom row: reconstructed frames

Sparse coding algorithm can see only every third frame (red boxes)

Iaroshenko, O., Wang, Z., Watkins, Y. and Kenyon, G.T., Increasing frame rate of X-ray videos using spatiotemporal Dictionaries, workshop on Deep Learning for Physical 
Sciences, NIPS 2017 (submitted).
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Radiographic Inference
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Nguyen, N.T.T., Larson, A.E., Kenyon, G.T., Implementation of a compressive sensing protocol on the quantum D-Wave 2X for 
inferring radial density profiles from synthetic radiographic images, (submitted)
Nguyen, N.T.T., Larson, A.E., and Kenyon, G.T., Generating sparse representations using quantum annealing: Comparison to 
classical algorithms, IEEE International Conference on Rebooting Computing (ICRC), 2017 (in press)


